
14th  January  2021

APP
ASSESSMENT

VBANK



The analysis was carried out as to the 
Terms and Conditions found here and 
agreed to by Bob Smith on 4th of 
January 2021.

This document captures the 
methodology and findings.

Verimatrix was asked by V BANK to perform a 

shallow dive security analysis on the V Bank Retail 

Banking application

https://play.google.com/store/apps/details?id=not.on.play.store

OVERVIEW

The scope of the review was a 
“shallow dive” investigation limited to 
240 minutes.

The environment used for testing: 
rooted and non-rooted Nexus 4 with 
Android 4.4 and 5.0.

https://www.verimatrix.com/app-analysis-tscs


The analysis looked for the presence of 
standard security measures. These are 
an indication of how exploitable a 
vulnerability would be an attacker.

To be clear, the analysis did not look for 
vulnerabilities within the app code. The 
complexity of modern mobile apps means 
that there is a “guaranteed vulnerability” 
in their code.

The analysis also did not try to breach 
any back-end systems. It was focused 
solely on the mobile application.

Once analysed, the apps were ranked 
against the Verimatrix scale.

The application was 
downloaded from Google Play 
and analyzed statically & 
dynamically using freely 
available tools.

METHODOLOGY

Static analysis means that the application 
code was observed but was not executed.

Dynamic analysis means that the 
application code was executed, modified 
and penetration test performed.



V Bank’s Android 
application scored a

GRADE

D
GRADE



All code handling sensitive data and algorithms is developed in a language that compiles to 
processor native machine code (i.e. C/C++) 
Strong control flow obfuscation² of the majority of code including all business logic 
No sensitive data (including cryptographic keys) visible in static analysis of code
Cryptographic keys protected by whitebox³ (or equivalent technology) 
Network traffic encrypted using TLS 1.3⁴ and downgrade not possible 
Certificate pinning⁵ applied to networking
Unable to attach a debugger or hooking framework to application (either on start-up or at 
any time while executing)
Application preventing from running under emulation or virtual machine
Application signed as required by target OS
Application resigning prevented
Anti-tamper⁶ protection of the application package and code

Strong control flow obfuscation of the majority of code including all business logic 
No sensitive data (including cryptographic keys) visible in static analysis of code
Network traffic encrypted using TLS 1.3 and downgrade not possible 
Certificate pinning applied to networking
Unable to attach a debugger or hooking framework to application (either on start-up 
or at any time while executing)
Application preventing from running under emulation or virtual machine
Application signed as required by target OS
Application resigning prevented
Anti-tamper protection of the application package and code

A
HIGHLY SECURE

B
SECURE

  1 The Verimatrix scale is an updated to the grading system proposed by UL and Verimatrix here 
  2 Obfuscation means scrambling computer code to make it less-intelligible to a human.
  3 Whitebox technology protects cryptographic operations and keys.
  4 TLS (Transport Layer Security) is the standard encryption protocol of the internet.
  5 Certificate pinning validates that the end point of communication is the intended end point.
  6 Anti-tamper technology provides a means to ensure the code being run is the intended code.

APPENDIX – VERIMATRIX SCALE¹

https://info.verimatrix.com/mobile-security-whitepaper-1


APPENDIX – VERIMATRIX SCALE

Control flow obfuscation of all business logic
No sensitive data (including cryptographic keys) visible in static analysis of code
Network traffic encrypted using TLS 1.3 and downgrade not possible 
Certificate pinning applied to networking
Unable to start application with debugger or hooking framework attached
Application signed as required by target OS
Application resigning prevented

Symbol obfuscation of business logic
Network traffic encrypted
Application signed as required by target OS

C
STANDARD

D
BASIC

NoneE
LITTLE OR 
NO SECURITY

CONTINUED



FINDINGS: APPLICATION

6054 classes
Bytecode

1 lib
NDK Code

34/100
MobSF Security Score¹

6.0/10
CVSS Rating²

Security Measure Finding Risk

APK is signed
V1 signature: True
V2 signature: True
V3 signature: False

Application is signed with v1 signature scheme, making it vulnerable to Janus
vulnerability on Android <7.0.

Resigning protection None Application can be resigned by an attacker allowing them to repackage the
application.

Protection against malicious code
insertion None Application can be repackaged with malware inserted or security measures

removed.

Network traffic encryption TLS 1.3  

1 https://mobsf.github.io/Mobile-Security-Framework-MobSF/
2 https://nvd.nist.gov/vuln-metrics/cvss



FINDINGS: APPLICATION

Security Measure Finding Risk

Prohibit network protocol downgrade Not prevent
Possible for an attacker to remotely make the application use a less secure
version of TLS.

Network traffic pinned No Man in the middle attack

Detect rooted device Shows warning but continues to execute
Running on a rooted device can be considered higher risk but does depend on
the security policy of the app owner.

Stop debugger attaching Debugger can attach
Attaching a debugger enables an attacker to dynamical analyze the
application.

Prevent running under emulation or
virtual machine Executes under emulation and VM

Running on an emulator enables an attacker to dynamical analyze the
application and to run an attack at scale.

Prevent application being traced with
Frida

Frida can trace and control executing
app

Utilizing a hooking framework enables an attacker to dynamical analyze the
application.

CONTINUED



FINDINGS: BYTECODE

Security Measure Finding Risk

Obfuscation Symbol obfuscation - Proguard
Weak or no obfuscation makes it easy for an attacker to statically analyze the
code.

Obfuscate sensitive values in code Yes (see below) Private data can be found through static analysis.

Binary integrity checks No An attacker can modify the code as they desire.

Do not expose cryptographic keys Visible in code Exposed cryptographic keys can be used to expose encrypted data.

Bytecode - Possible sensitive values visible in code
“token” : “o4rq66ns23qr”
“google_api_key” : “a34a633a165357cs…”
“authentication_salt” : “jfd9qdhjsa93ej3l”

Bytecode - Possible cryptographic keys visible in code
“storage_aes_key” : “a356d23abe9f5bb2582e2d7653ee5b89”



FINDINGS: NDK CODE

Security Measure Finding Risk

Obfuscation None
Symbol obfuscation not applicable to NDK code but absence of control flow
obfuscation makes it easier for an attacker to statically analyze the code.

Obfuscate sensitive values in code None found in code

Binary integrity checks None An attacker can modify the code as they desire.

Do not expose cryptographic keys None found in code



The application does not have the 
necessary protections that stop an 
attacker find what data the 
application is processing, how it is 
processed and how it transmitted 
and stored. While the network traffic 
is encrypted, the end point within 
the application is open allowing a 
criminal to craft an attack to extract 
data from the mobile application.

An application scoring a D grade 
would typically be vulnerable to 
personal data theft.

DATA PRIVACY

D
GRADE

This means there is a risk of penalties 
under privacy legislation such as 
GDPR. It should also be noted that 
most data privacy regulations put a 
duty to disclose breach on the data 
controller. This means that any 
breaches have to made public. For any 
business, customer confidence is very 
important. A public breach quickly 
erodes that confidence.



IMPROVEMENTS

D
GRADE

Through this short review, it can be seen 
that the application would benefit from 
more powerful obfuscation including 
control flow. This would make it much 
harder for an attacker to recover 
meaningful and readable source code.

More powerful environmental checks can 
be used to thwart attempts to attach 
debuggers or to otherwise observe the 
application running; as well as remove the 
ability for users to create repackaged 
versions of the app that circumvent the 
root checks.

Anti-tamper technology would stop 
security and other features in the 
application from being removed by an 
attacker. It would also inhibit an attacker 
from creating a repackaged version of the 
application.

Care should also be taken to ensure that 
communication is correctly configured, and 
network connections are pinned.

If these changes are made, the application 
would grade substantially higher than it 
was assessed in this review.

As banking applications handle 
sensitive personal and financial 
data, as well as connecting to wider 
banking infrastructure through 
APIs, Verimatrix would recommend 
that consideration is given to a 
deeper dive Vulnerability 
Assessment or App Security Audit.


